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Human society is a complex nonequilibrium system that changes and develops
constantly. Complexity, multivariability, and contradictoriness of social evolu-
tion lead researchers to a logical conclusion that any simplification, reduction,
or neglect of the multiplicity of factors leads inevitably to the multiplication of
error and to significant misunderstanding of the processes under study. The
view that any simple general laws are not observed at all with respect to social
evolution has become totally predominant within the academic community, es-
pecially among those who specialize in the Humanities and who confront direct-
ly in their research all the manifold unpredictability of social processes.

A way to approach human society as an extremely complex system is to rec-
ognize differences of abstraction and time scale between different levels. If the
main task of scientific analysis is to detect the main forces acting on systems so
as to discover fundamental laws at a sufficiently coarse scale, then abstracting
from details and deviations from general rules may help to identify measurable
deviations from these laws in finer detail and shorter time scales. Modern
achievements in the field of mathematical modeling suggest that social evolu-
tion can be described with rigorous and sufficiently simple macrolaws. Our
goal, at this stage, is to discuss a family of mathematical models whose greater
specification leads to measurable variables and testable relationships.

Tremendous successes and spectacular developments in physics (especially,
in comparison with other sciences) were, to a considerable degree, connected
with the fact that physics managed to achieve a synthesis of mathematical me-
thods and subject knowledge. Notwithstanding the fact that already in the clas-
sical world physical theories achieved a rather high level, it was in the modern
era that the introduction of mathematics made it possible to penetrate deeper in-
to the essence of physical laws, laying the ground for the scientific-
technological revolution. However, such a synthesis was not possible without
one important condition. Mathematics operates with forms and numbers, and,
hence, the physical world had to be translated into the language of forms and
numbers. It demanded the development of effective methods for measuring
physical values and the introduction of scales and measures. Starting with the
simplest variables — length, mass, time — physicists learned how to measure
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charge, viscosity, inductance, spin and many other variables, which are neces-
sary for the development of the physical theory of value.

In an analogous way, a constructive synthesis of the social sciences with ma-
thematics calls for the introduction of adequate methods for the measurement of
social variables. In the social sciences, as in physics, some variables can be
measured relatively easily, while the measurement of some other variables
needs additional research and even the development of auxiliary models.

One social variable that is relatively well accessible to direct measurement is
population size. That is why it is not surprising that the field of demography at-
tracts the special attention of social scientists, as it suggests some hope for the
development of quantitatively based scientific theories. It is remarkable that the
penetration of mathematical methods into biology began, to a considerable ex-
tent, with the description of population dynamics.

The basic measurability of data is quite evident here; what is more, the basic
equation for the description of demographic dynamics is also rather evident, as
it stems from the conservation law:

d—N =B-D (0.1)
dt ’

where N is the number of people, B is the number of births, and D is the number
of deaths in the unit of time. However, at the microlevel it turns out that both
the number of deaths and number of births depend heavily on a huge number of
social parameters, including the "human factor" — decisions made by individual
people that are very difficult to formalize.

In addition to this, equation (0.1) does not take into account the spatial
movement of people; hence, it should be extended:

N _B_D—div o)
= ,

where vector J corresponds to the migration current. In this case the problem
becomes even more complicated, as migration processes are even more likely to
be influenced by external factors.

That is why any formal description of demographic processes at the micro-
level confronts serious problems associated first of all with the lack of sufficient
research on formal social laws connecting economic, political, ethical and other
factors that affect individual and small group (e.g., household or nuclear family)
behavior. Thus, at the moment the only available approach is macrolevel de-
scription that does not go into the fine details of demographic processes and de-
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scribes dynamics of very large human populations, which is influenced by the
human factor at a significantly coarser level of abstraction and on a longer time-
scale.

Biological processes of birth and death are characteristic not only of people,
but also of any animals. That is why a rather natural step is to try to describe
demographic models using population models developed within biology (see,
e.g., Riznichenko 2002).

The basic model describing animal population dynamics is the logistic mod-
el, suggested by Verhulst (1838):

dN N
—=rN1-—— (0.2)
m =0
which can be also presented in the following way:
‘jj_':'=(a1|\|)—(a2|\| +bN?). 03

where a;N corresponds to the number of births B, and a,N + bN? corresponds to
the number of deaths in equation (0.1); r, K, aj, a,, b are positive coefficients
connected between themselves by the following relationships:

r

r=a;-a, and b:E, (0.4)

The logic of equation (0.3) is as follows: fertility a; is a constant; thus, the
number of births B = a;N is proportional to the population size, natural death
rate a, is also considered to be constant, whereas quadratic addition bN? in ex-
pression for full number of deaths D = a;N+bN? appears due to the resource li-
mitation, which does not let population grow infinitely. Coefficient b is called
the coefficient of interspecies competition.

As a result, the population dynamics described by the logistic equation has
the following characteristics. At the beginning, when the size of the animal
population size is low, we observe an exponential growth with exponent
r = a; — a,. Then, as the ecological niche is being filled, the population growth
slows down, and finally the population comes to the constant level K.

The value of parameter K, called the carrying capacity of an ecological
niche for the given population, is of principal importance. This value deter-
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mines the equilibrium state in population dynamics for the given resource limi-
tations and controls the limits of its growth.

Another well known population dynamics model is Lotka — Volterra one
(Lotka 1925; Volterra 1926), denoted also as the "prey — predator” model. It
describes dynamics of populations of two interacting species, one of which con-
stitutes the main food resource for the other, and consists of two equations of

type (0.1):

ax = Ax — Bxy

c(Jj; (0.5)
—=Cxy-D

at y—-Uy,

where x is the size of the prey population, y is the size of the predator popula-
tion; A, B, C, D are coefficients.

This model, like (0.2), assumes that the number of prey births is proportion-
al to their population size. The number of predator deaths is also proportional to
their population size. As regards prey death rates and predator fertility rates, we
are dealing here with a system effect. Prey animals are assumed to die mainly
because of contacts with predators, whereas the predator fertility rates depend
on the availability of food — prey animals. The model assumes that the average
number of contacts between prey animals and predators depends mainly on the
size of both populations and suggests expression Bxy for the number of prey
deaths and Cxy for the number of predator births.

This model generates a cyclical dynamics. The growth of the prey popula-
tion leads to the growth of the predator population; the growth of predator pop-
ulation leads to the decrease of the prey animal number; decrease of the prey
population leads to the decrease of the predators’ number; and when the number
of predators is very small, the prey population can grow very rapidly.

The population models described above are used very widely in biological
research. It seems reasonable to suppose that, as humans have a biological na-
ture, some relations similar to the ones described above, or their analogues
could be valid for humans too.

In deep prehistory, when human ancestors did not differ much from animals,
models (0.2) — (0.4) may have been applied to them without any significant res-
ervations. However, with the appearance of a new human environment, the so-
ciotechnological one, the direct application of those models does not appear to
be entirely adequate. In particular, model (0.2) assumes carrying capacity to be
determined by exogenous factors; however, human history shows that over the
course of time the carrying capacity of land has tended to increase in a rather
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significant way. Hence, in long-range perspective carrying capacity cannot be
assumed to be constant and determined entirely by exogenous conditions. Hu-
mans are capable of transforming those conditions affecting carrying capacity.

As regards model (0.4), it has an extremely limited applicability to humans
in its direct form, as humans learned how to defend themselves effectively from
predators at very early stages of their evolution; hence, humans cannot function
as "prey" in this model. On the other hand, humans learned how not to depend
on the fluctuations of prey animals populations, hence, they cannot function as
predators because in model (0.4) predators are very sensitive to the variations of
prey animal numbers (This model could still have some limited direct applica-
bility to a very few cases of highly specialized hunters).

However, model (0.4) may find a new non-traditional application in demo-
graphic models. In particular it may be applied to the description of demograph-
ic cycles that have been found in historical dynamics of almost all the agrarian
societies, for which relevant data are available. The population plays here the
role of "prey"”, whereas the role of "predator" belongs to sociopolitical instabili-
ty, internal warfare, famines and epidemics whose probability increases when an
increasing population approaches the carrying capacity ceiling (for detail see,
e.g., Korotayev, Malkov and Khaltourina 2005: 211-54). Demographic cycles
are by themselves a very interesting subject for mathematical research, and they
have been studied rather actively in recent years (Usher 1989; Chu and Lee
1994; Malkov and Sergeev 2002, 2004; Malkov et al. 2002; Malkov 2002,
2003, 2004; Malkov, Selunskaja, and Sergeev 2005; Turchin 2003, 2005a,
2005b; Turchin and Korotayev 2006; Nefedov 2002a; 2004; Korotayev, Mal-
kov and Khaltourina 2005 etc.)

As is well known in complexity studies, chaotic dynamics at the microlevel
can generate a highly deterministic macrolevel behavior (e.g., Chernavskij
2004). To describe behavior of a few dozen gas molecules in a closed vessel we
need very complex mathematical models; and these models would still be una-
ble to predict long-run dynamics of such a system due to inevitable irreducible
chaotic components. However, the behavior of zillions of gas molecules can be
described with extremely simple sets of equations, which are capable of predict-
ing almost perfectly the macrodynamics of all the basic parameters (just be-
cause of chaotic behavior at microlevel). Of course, one cannot fail to wonder
whether a similar set of regularities would not also be observed in the human
world too. That is, cannot a few very simple equations account for an extremely
high proportion of all the macrovariation with respect to the largest possible so-
cial system — the World System?



